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ABSTRACT
We present the motivation, design, implementation, and preliminary
evaluation for a service that enables astronomers to study the growth
history of galaxies by following their ‘merger trees’ in large-scale
astrophysical simulations. The service uses the Myria parallel data
management system as back-end and the D3 data visualization
library within its graphical front-end. We demonstrate the service at
the workshop on a ∼5 TB dataset.
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H.2.4 [Database Management]: Systems—Distributed databases,
Query processing, Relational databases
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1. INTRODUCTION
In the age of high-performance computing, scientists regularly use

large-scale simulations to model the behavior of complex, natural
systems [10]. As the volume of the data generated with the state-
of-the-art code grows, it is increasingly difficult to analyze that
data via traditional scientific tools (e.g., IDL & Python) because of
limitations in I/O, memory and CPU resources [9].

At the same time, we see the development of novel data man-
agement systems (e.g., GraphLab and Shark), and Cloud services
(e.g., Amazon Elastic MapReduce and Google BigQuery) that can
facilitate scientific data analysis at a large scale. However, it is often
difficult to express scientific questions using the data models and
query languages provided by such tools. Additionally, to achieve
high-performance, users must physically tune their systems: the
simplest ways to articulate queries and organize data on disk often
lead to poor performance when processing terabytes of data.

One approach to enabling this science is to develop specialized
services that facilitate specific types of analysis on specific types
of data. This approach is practical when datasets can be hosted
centrally and when large groups of users need to perform similar
analyses. This is relevant to the field of astronomy, in which large-
scale, shared scientific datasets are publicly available to and used by
the entire scientific community (e.g., [12]).
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In this paper, we present a use-case centered on building MyMerg-
erTree, a vertical data-analysis service designed to meet the needs
of astronomers who work with large-scale cosmological simulations.
Cosmological simulations track the evolution of galaxies such as
our own over a span of 14 billions years from the Big Bang to the
present day. The standard model of galaxy formation involves the
hierarchical assembly of galaxies through merging of smaller galax-
ies. Any given galaxy will have a unique merger history; scientists
would like to know how much do these merger histories vary de-
pending on a galaxy’s final mass, proximity to other galaxies, or
other factors? MyMergerTree targets this active area of research.

The cosmological simulation in MyMergerTree was produced by
the University of Washington N-body shop. It uses ChaNGa [8], a
fully hydrodynamic+N-body tree code, to track the mass distribution
of the Universe using ∼2 billion particles. In this simulation, 46
snapshots were taken to record the position, velocity, and internal
properties of all the particles at different moments in time. The
amount of data recorded is immense: at 60 bytes of data per particle,
each snapshot comprises more than 100 GB of data, resulting in a
∼5 TB dataset. Since reconstructing the merger histories of galaxies
requires joining and aggregating the 5 TB of particle data across all
simulation snapshots, computing these merger trees efficiently and
quickly is a major challenge, even for Big Data systems.

In this paper, we present the design, implementation, and prelim-
inary evaluation of the MyMergerTree service for the interactive
analysis of galactic merger trees that form in cosmological simula-
tions. We begin by describing the data and necessary analyses in
Section 2. To facilitate these analyses at scale, MyMergerTree uses
a new Big Data management and analysis service called Myria.1 We
adopt Myria for this problem because we are actively developing it;
the merger tree use case is an excellent testbed for the efficiency of
the Myria engine. Myria is an elastically-scalable, shared-nothing
system with advanced features including native support for iterative
computations. Our analysis is expressed using declarative queries
that Myria executes in parallel on the cluster. To achieve high-
performance, however, we need to carefully tune the Myria system
as we describe in Section 3.

We also describe the astronomer’s interface to MyMergerTree,
which enables interactive analysis of these data through a web
browser. We develop a simple interface that enables users to con-
figure the merger tree analysis to suit their specific needs, without
needing to author or ever seeing SQL queries. This component
builds on three important technologies to provide a useful, science-
oriented lens on the data. First, in addition to providing massive
computing power, Myria offers a RESTful cloud service that can

1Myria was developed by the database group at the University of
Washington over the past year and a half and will be demonstrated
at SIGMOD 2014 [7].



be easily used for ‘mash-ups.’ Second, we extended the University
of Washington’s web-based astronomy data visualization toolkit
ASCOT [11] to generate queries based on user input, issue them
to Myria, and fetch the results. Third, MyMergerTree displays the
analysis results using the data visualization library D3 (screenshot
in Figure 2) [3]. We describe this front-end interface in Section 4.

We finish our presentation of MyMergerTree with preliminary
performance numbers and initial user feedback in Section 5. We
discuss related work in Section 6. We conclude in Section 7 that such
vertical services are valuable to users but challenging to implement.

2. GALACTIC MERGER TREES:
DATA MODEL AND ANALYSIS

2.1 Data Model
The simulation data produced by ChaNGa takes the form of a

series of 46 snapshots. Each snapshot captures the state of the
Universe, as represented by a set of particles, at a specific moment
in time during the simulation. Snapshots are saved in the simulation-
specific NChilada File Format, which contains 30 attributes per
particle, including position, mass, velocity, and temperature. The
original data are provided in separate files for each snapshot. We
ingest these snapshots into Myria and create a view to represent the
entire simulation as a single relation by UNIONing all the data and
appending a time column to identify the source snapshot.2

Creating a merger tree uses five attributes in the simulation data:
the snapshot time, a particle’s unique identifier iOrd, and the
particle’s type, mass, and grpID. For convenience we create
a second view, ParticleTable, to represent these attributes,
though the remaining features are maintained for future analyses:

ParticleTable(iOrd, type, mass, time, grpID)

A particle’s iOrd tracks an individual particle across snapshots.
The type refers to its material content (gas, stars or dark matter).
Depending on the science involved, an astronomer may indicate
which particle types should be used to construct a merger tree. Every
particle has a mass attribute, which refers to how much matter the
particle represents in the Universe.

For each snapshot, a stand-alone clustering application identi-
fies groups of particles as galaxies based on spatial locality; each
particle it tagged with a grpID corresponding to the galaxy it is
associated with. Snapshots are clustered independently from one
another, so there is no direct correspondence between grpID values
across time; instead the combination (time, grpID) identifies a
galaxy uniquely. We can determine the overall mass of a galaxy by
summing the mass of all particles in that group at that time.

2.2 Merger Tree Computation
The merger-tree computation requires three steps: selecting galax-

ies of interest from the present day, selecting the particles associated
with those galaxies, and tracing these particles to earlier times to find
the galaxies that have merged together. These associated galaxies
are used to generate the “edges” of the merger tree. Each step can
be expressed as a query on the ParticleTable view.

Step 1: galaxiesOfInterest. Typical users want to see the merger
trees for a subset of galaxies at present day, often predicated on
galaxy mass. For example, many scientists are interested in dwarf
galaxies, which at present day have a total mass below 1010.5 solar
masses. We select these galaxiesOfInterest with a groupby-
aggregation query over particles in ParticleTable at the most
2Because Myria does not yet support views, we either materialize
them (for small simulations) or manually rewrite queries to use the
base tables (in this paper).
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Figure 1: MyMergerTree service architecture.

recent moment in time.
Step 2: particlesFromGalaxies. To construct the merger tree

for each galaxy in the galaxiesOfInterest relation, we need
to extract the particles that belong to these galaxies at present day
and track them backward in time. Conceptually, we use a join with
galaxiesOfInterest in order to filter the ParticleTable
and extract the iOrd for particles that belong to the selected
galaxies. We then perform a semi-join between this result and
ParticleTable to extract their information at earlier times. We
call the resulting relation particlesFromGalaxies.

Step 3: edgesTable. Finally, we link galaxies across time if
they have particles in common. This step requires a self-join of
particlesFromGalaxies on the iOrd attribute, with the ad-
ditional join constraint that matching particles must come from
adjacent timesteps. An additional groupby-aggregate filters the very
large number of possible pairs of galaxies to a scientifically sig-
nificant set that, e.g., contains a substantial amount of dark matter
and many particles (see below). The resulting relation is called the
edgesTable. As implied by the name, this query results in a
leveled adjacency list, a common way to model a graph in SQL [4].
In this model, each edge of the graph is represented as a pair of
nodes in which ordering matters. An additional column captures the
timestep where the edge belongs. Myria supports multiple query
languages [7]; We show the SQL query to generate edgesTable:

CREATE VIEW edgesTable AS
SELECT p1.time as time,

p1.grpID as currentGalaxy,
p2.grpID as nextGalaxy,
SUM(p2.mass) as totalMass,
SUM(CASE WHEN p2.type="dark"

THEN 1 ELSE 0 END) as countDark,
COUNT(p2.iOrd) as countParticles

FROM particlesFromGalaxies p1,
particlesFromGalaxies p2

WHERE p1.iOrd = p2.iOrd and
p1.time + 1 = p2.time

GROUP BY p1.time, p1.grpID, p2.grpID
HAVING SUM(CASE WHEN p2.type="dark"

THEN 1 ELSE 0 END) > 64
and COUNT(p2.iOrd) > 100

3. SERVICE BACK-END: MYRIA
The architecture of MyMergerTree is shown in Figure 1. MyMerg-

erTree uses Myria for data storage and parallel, distributed query
evaluation on a shared-nothing cluster. Myria can read and process
data directly from external sources, e.g., HDFS or the Internet, and
data loaded into Myria is stored in PostgreSQL, with an independent
instance running at each cluster node (similar to HadoopDB [2]). By
this design, Myria can leverage PostgreSQL’s indexing capabilities
and can also push some of the computation directly into that storage
layer. Once in memory, Myria continues processing the data using
its own in-memory relational and data shuffling operators.

Initially, the cosmological simulation data is loaded into HDFS,
allowing us to replicate the snapshots across the cluster and ensure
that one copy of the data always remains in its original format. Next,
we execute a Myria query to read the data from HDFS, parse it with
a custom NChiladaFileScan operator, distribute it in round-robin
fashion across a set of Myria workers, and store it in the underlying
PostgreSQL instances. Once the simulation is stored in PostgreSQL,



we index the particle data (i.e., one table per snapshot) on the iOrd
and grpID attributes.

As outlined in Section 2, Step 1 of the merger tree analysis is an
aggregation query that computes galaxiesOfInterest. This
query can easily be executed in parallel across all workers. We
discuss its performance in Section 5.

Step 2, the most computationally expensive part, involves
tracing the particles from galaxiesOfInterest across time.
This query joins the galaxiesOfInterest relation with
two copies of the ParticleTable view of the entire 5 TB
dataset! Similarly, Step 3 requires a parallel self-join of the en-
tire particlesFromGalaxies relation. By default, Myria ex-
ecutes parallel hash-joins to evaluate these queries, but this would
require re-shuffling the very large tables. Instead, we optimize the
physical plan.

To avoid the default behavior, we invoke several known opti-
mizations that prevent re-shuffling of large relations. The underly-
ing premise is to identify the small tables that are constructed as
part of the analysis and to broadcast them among all the workers,
so that the large tables need not be shuffled. To do this, we first
define a Myria query to broadcast the galaxiesOfInterest
relation to all workers and then join galaxiesOfInterest lo-
cally at each worker with the table holding the most recent snapshot.
This happens in parallel without the shuffling of any data. We call
the result the todayParticles relation. Second, because the
todayParticles table is typically small compared to any indi-
vidual snapshot table, we broadcast it as well. We can now compute
the particlesFromGalaxies relation with a parallel join be-
tween todayParticles and the ParticleTable view (i.e.,
each underlying snapshot table) without data shuffling. We hash-
partition the result on iOrd in preparation for Step 3. Finally, we
execute the query shown in Step 3. Again, the join in that query is
done in parallel without shuffling any data. Only partial aggregates
are shuffled to produce the final result.

In contrast to this approach, we observe that if we had hash-
partitioned all the snapshot data on the iOrd particle identi-
fier when initially ingesting the data, we could have avoided
broadcasting the todayParticles relation and re-hashing
particlesFromGalaxies. When the input data is hash-
partitioned on iOrd, all joins on that attribute can be done in paral-
lel without any data shuffling. We compare runtimes of building a
merger tree through the initial non-hashed setup to the hashed-on-
ingest method in Section 5.

4. SERVICE FRONT-END
MyMergerTree’s front-end uses the Astronomical Collaborative

Toolkit (ASCOT) [11], which is a web based data processing plat-
form that can access data from a wide array of sources and integrate
it into a unified dashboard. We chose to build the MyMergerTree
front-end as one “gadget” (stand-alone tool) in ASCOT to enable
future integration with other existing gadgets. MyMergerTree’s
front-end enables scientists to analyze the simulation data directly
from their browser without the need to write queries.

When a user first starts the ASCOT merger tree gadget, the user
must provide selection criteria for the present day galaxies of interest
based on calculable galaxy properties such as mass, luminosity, or
gas content (the current version only supports predicates on mass).
The user can also alter the particle conditions used in calculating the
edgesTable. Given these galaxy specifications, MyMergerTree
computes the requested merger trees by issuing the corresponding
queries as described in Sections 2 and 3. These results are cached in
Myria to eliminate re-computation for subsequent users.

Once merger trees of interest have been computed, MyMerg-

Figure 2: Interactive merger tree visualization in the MyMerg-
erTree service.

erTree displays them using the D3 visualization library, which al-
lows the user to interactively explore them as shown in Figure 2.
MyMergerTree initially shows a random galaxy, but the user can
enter a particular galaxy’s grpID to view its merger tree. Galaxies
are represented as nodes in the resulting tree.

When exploring the merger tree visualization, users may hover
over galaxies and MyMergerTree will display the relevant galaxy
information. The user can click on a galaxy to collapse/expand
earlier galaxy leaves. By dragging and scrolling on the tree diagram,
the user can zoom in/out to focus on interesting merger activity. The
scroll bar at the top of the visualization window makes navigation
between trees relatively simple.

Two function graphs located at the bottom of the visualization
window allow users to interactively select relevant galaxies on the
tree based on user defined criteria. For example, the left graph in
Figure 2, selects specific galaxies based on their mass information.
Upon selecting a mass threshold (which is done by brushing the
graph), the galaxies meeting the specified criteria are highlighted in
the graph. The user can highlight all earlier leaves associated with a
particular galaxy by holding the “Shift” key and clicking on a galaxy
node of the tree. Finally, users can export data in the highlighted
portions of the merger tree by clicking the “Download” button; this
returns a CSV list of galaxy properties including grpID, total mass,
particle count, dark particle count and luminosity.

5. EVALUATION
We present initial performance results and some of the new sci-

ence that the N-body group seeks to carry out using MyMergerTree.
Quantitative: We run all experiments in a cluster of 32 Myria

processes (workers) spread across 16 physical machines (Ubuntu
13.04 with 4 disks, 64 GB of RAM, and 4 Intel(R) Xeon(R)
2.00 GHz processors). We first ingest the data from HDFS and
distribute it in a round-robin fashion in the PostreSQL instances on
the machines, which takes an average ∼5 hours per snapshot.

To evaluate the merger tree computation time, we vary two
parameters. First, we vary the number of snapshots (repre-
senting the depth of the tree) up to 7 snapshots, representing
∼700 GB of data. Second, we vary the number of galaxies
in the galaxiesOfInterest table. Figure 3 shows the to-
tal time to construct the edgesTable in each configuration.
As the number of snapshots increases, more local joins are re-
quired per worker. Additionally, as the number of galaxies in the
galaxiesOfInterest table increases, the size of the relation
in the local join increases, leading to an approximately linear in-
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Figure 3: Time to compute merger trees with round-robin data
partitioning.
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Figure 4: Time to compute a set of merger trees with
application-aware data partitioning, hashing data on iOrd.

crease in query runtimes. On average, MyMergerTree can build a
single merger tree in approximately 22 minutes for seven snapshots
and within 42 minutes for building 15 trees simultaneously.

To reduce runtimes, we re-hash the input data on the iOrd at-
tribute as described in Section 3. Re-hashing takes ∼1.6 hours
per snapshot. Although this process is time consuming, this cost
is incurred only once and the benefit is worthwhile. As shown in
Figure 4, runtimes for the tree generation decrease by as much as
80% for some cases. Through this method, MyMergerTree can
take at most 3 minutes per tree when building 15 trees at a time for
7 snapshots. We measure worst-case runtimes for the service by
running a large, unrelated query before each timed query.

In the figures, approximately 11% percent of the time shown
goes to compute todayParticles, 86% percent goes into
particlesFromGalaxies, and a remaining 3% to build the
edges. The time to build the galaxiesOfInterest table is not
included. It takes approximately 3.75 minutes time to run this query.

Although these runtimes are promising, we seek to improve them.
MyMergerTree already caches merger trees to avoid recomputing
them when possible. We can also use more workers: we have suc-
cessfully executed queries with Myria on 100-instance Amazon EC2
deployments, but with a different dataset. We are also working on
further optimizing the queries themselves and the split of operations
between Myria and the underlying database system.

Qualitative: The initial reactions of the N-body group to the new
service have been positive. The group wants to use the MyMerg-
erTree service to visually and quantitatively correlate the merger
histories of individual galaxies with the evolution of particular prop-
erties, such as star formation rate and gas fraction. The group would
also like to use MyMergerTree in a more statistical manner, where
MyMergerTree will use a metric to quantify the similarity of merger
trees. While MyMergerTree can already compute and display sim-
ilar merger trees, we are further developing this feature to allow
astronomers to correlate similar merger histories with global trends.

6. RELATED WORK
In order to obtain robust merger rates and merger trees, one needs

rich galaxy statistics from a large and well resolved cosmological
simulation and a careful treatment of the systematic effects due to
the galaxy finding and merger algorithms employed [6]. One of the
largest, publicly available N–body simulations that has been used
to create merger trees is the Millennium simulation [13]; merger
trees from this dark matter only realization of the Universe have

been thoughtfully treated using database technology [1]. How-
ever, the merger trees from this analysis that are freely distributed
lack a high degree of time resolution and are generally used only
for semi-analytic purposes. The merger trees we create with the
MyMergerTree service can consider any desired degree of time reso-
lution and allow for detailed individual studies of simulated galaxies;
moreover, MyMergerTree can be leveraged by any simulation group,
regardless to their personal access to database technology.

Crankshaw et al. [5] develop an inverted index for particle track-
ing in cosmological simulations. Our work is complementary: we
focus on the building blocks involved in developing a complete
service for computing and analyzing merger trees.

7. CONCLUSION
We presented the MyMergerTree service developed to facilitate

the study of galactic merger trees found in large-scale cosmolog-
ical simulations. There are many lessons learned from building
MyMergerTree: while data ingest times could use optimizations,
they are not the key challenge as ingestion happens only once. Tools
to automatically validate ingested data against the original data are
more critically needed. The most interesting challenge, in our ex-
perience, remains query tuning: one needs to transform queries
expressed in a manner close to the spirit of the original analysis into
queries that can efficiently be evaluated, which may require chang-
ing query result schemas. Overall, building vertical services, such as
MyMergerTree, remains a non-trivial project for a highly-qualified
inter-disciplinary team. Methods and tools to accelerate this process
are important challenges for the data management community.
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